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Abstract. This paper presents a study ol the dynamics for a single-stage, axial-flow, high
speed compressor core, specifically, the NASA Lewis rotor stage 37. Due to the overall
blading design for this advanced core compressor, each stage has considerable tip loading
and higher speed than most compressor designs, thus, the compressor operates closer to
the stall margin. The onset of rotating stall is explained as bifurcations in the dynamics of
axial compressors. Data taken from the compressor during a rotating stall event is
analyzed. Through the use of a box-assisted correlation dimension methodology. the
attractor dimension is determined during the bifurcations leading to rotating stall. The
intent of this study is to examine the behavior of precursive stall events so as to predict
the entrance into rotating stall. This information may provide a better means to identify,
avoid or control the undesireable event of rotating stall formation in high speed
COMPIEssor cores.

MOTIVATION

In studying the dynamics of turbomachinery, specifically, axial-flow
compressor behavior, several approaches have been developed to determine when
the compressor is entering a rotating stall event. Rotating stall, as shown in
Figure 1, is the development of a circumferentially non-uniform flow across the
compressor face. Surge, on the other hand, is an axially oscillating flow event
through the compressor. The rotating stall cvent is consequentially severe because



stall can cause severe unsteady loading on the rotor and stator blades. Rotating
stall causes a large drop in pressure rise delivered in the engine where an engine
restart is often needed to clear the stall event. Rotating stall may also lead to
surge or “flame out” of the engine. Obviously, this is a good behavior to avoid in
axial-flow compressors.
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Figure 1. Rotating Stall and Surge Events in an Axial Flow Compressor

One approach for determining prestall behavior of the compressor exists
based on the assumption that rotating stall is primarily a linear event and can be
approximated by the first 3 spatial harmonics of the Fourier transform
coefficients. “Measurement of prestall perturbations are made by acquiring time
traces from a circular array of sensors. These signals are decomposed into spatial
harmonics, a spectrum of spatial harmonics is used for identification of the
evolution of 2-D rotating stall.”[1]

Another approach uses the change in energy of the power spectral density
traces of pressure data prior to stall. “In steady state behavior of the compressor,
these power spectral density curves remain symmetric. However, during the
evolution of stall cells these power spectral density curves change shape. This
method identifics traveling wave energy in the compressor which may lead to the
formation of stall cells.”[2] This metamorphosis of the power spectral density
curves is another precursive event for identifying rotating stall.



The approach used in this paper attempts to identify the stall precursive
events as correlation dimension changes in the pressure data from a single sensor
position. This paper will describe the compressor used for the experiment,
equations of motion which capture some of the relevant 1-D compressor
dynamics, the data acquisition and experimental setup, the correlation dimension
technique used for analysis, and a summary of observations.

DESCRIPTION OF COMPRESSOR STAGE AND
EXPERIMENT

The NASA rotor 37 axial-flow, high-speed compressor stage for advanced
airbreathing engines is an inlet stage compressor designed as part of an eight-stage
core compressor having a pressure ratio of 20:1. The compressor design has a
constant meanline diameter, with an inlet hub-tip ratio of 0.7 and an inlet rotor-tip
speed of 455 meters per second. The loading per stage is considerably high for a
research test compressor. Additional details on the blading, geometry, and testing
of this compressor can be found in references {3 and 4].

The rotor 37 compressor was instrumented with 8 circumferentially placed
pressure transducers within 1 chord length upstream of the rotor. These wall
static pressure transducers measured the pressure fluctuations during the transition
into stall. The rotor was stalled by closing the throttle area in a linear manner.
Data was acquired for 15 scconds prior to a full stall event at a sampling rate of 2
kilohertz. The rotor was operating at 100% speed, 17581 rpm, for the stall runs.
The test facility for this compressor is shown in Figure 2 which details the flow
path through the inlet, compressor, plenum and throttle. Figure 3 shows the 8
circumferentially placed transducers around the wall of the compressor.
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FIGURE 2. Compressor Facility Drawing of Flow Path

FIGURE 3. Circumferentially Placed Pressure Transducers

EQUATIONS OF MOTION

An approximate set of equations that describe surge and rotating stall
transient formation are as follows from reference [5]:

1-D momentum: d%, =y +\J,f{ (¢)—30R
1-D continuity: d‘l’é} = /leq) —q).r(\l’ )]

2
Stall cell growth: det =0oR(l ——q) - R)



where ¢ = compressor mass flow, y = system pressure rise, R = (stall cell

amplitude )2 .

From these equations one can estimate the rate of stall cell growth for a particular
compressor geometry. With this estimated rate of stall cell growth, the data
collection for the experiment was planned to capture the initial stall formation
with the wall static pressure transducers. Additionally, initial estimates for the
embedding dimension and time delay parameters for correlation dimension
determination were based on the use of this physical model.

EXPERIMENTAL DATA

Data gathered from 1 of the circumfcrential pressure transducers is shown

in Figure 4.
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FIGURE 4. Pressure data

A phase plane portrait of the pressure data is reconstructed using 5000 data points.
To reconstruct the attractor, an independent time series of data was generated



using the following time delay embedding method[6]:
v(t) = (x(t), x(t+T), ..., x(t+(m-1)T).

where v(t) is the independent time series, m is the embedding dimension, and T is
the reconstruction time delay. For this pressure data, the values of m=4 and
T=240 were used for the reconstruction

DIMENSION DETERMINATION

Verification of the dimension variation of this compressor is provided
through a chaos package software routine. A box-assisted correlation dimension
algorithm [7,8] is used to determine the correlation dimension of the measured
stall data.

For the correlation dimension method, 16000 pressure data samples are
used prior to the onset of stall, of which the first 1000 points are thrown out as
transient. Using a 5000 data point sliding window, the window is moved every
300 samples, thus creating 28 slices of 5000 points each of pre-stall data. Using
5000 data points allows for accurate prediction of correlation dimension up to
approximately dimension 8, according to the following equation from Eckmann
and Ruelle[9] which states:

Maximum Accurate Dimension < 2 log(number of data points).

With this limit in mind, the correlation dimension, (or correlation exponent), was
calculated using a Grassberger-Procaccia correlation integral [10] for each of the
28 slices before stall. This correlation exponent is closely related to the fractal
dimension and gives a lower bound to the fractal dimension. The Grassberger-
Procaccia algorithm using Theiler's method[7,8] considers the spatial correlation
between pairs of points on a reconstructed attractor, and is measured with the
following correlation integral:

2

=— H(r—||Xi-Xj
o 3, Hr = [Xi= X5

ij=1

C(N,r)

where H(x) is the Heaviside step function. The summation counts the number of
pairs (Xi,Xj) for which this distance is less than r, where r is the box size. Then

C(N,r) scales like a power of v so that:



CIN,;r) =p

where v is the correlation dimension and is the slope of the log-log plot of C(N,r)
VS. T

Figure 5 shows the correlation dimension integral plots for the measured pressure
data. It is shown that the correlation dimension for the first 20 slices of data
remains constant. However, during the 2l1st slice of data, the correlation
dimension begins to increase. This corresponds to a bifurcation occurring in the
pressure data and subsequently to a stall precursive event as detected from the
power spectral density curves shown in Figure 6. As the slices of data move
further into the onset of stall the correlation dimension continues to increase. This
is shown in Figure 7.
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FIGURE §. Correlation Dimension Changes at 20th Window and into Stall
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CONCLUSIONS

From this study it is shown that pressure data acquired from a single stage,
high speed compressor bifurcates during the onset of rotating stall. During these
bifurcations the power spectral density and the correlation dimension is analyzed
from a single pressure sensor. It is shown that the correlation dimension increases
during the stall precursive events leading to rotating stall. Changes in the
correlation dimension integral match the results from analyzing the power spectral
density curves for this pressurc data. This indicates both the correlation
dimension and the power spectral density curves begin to move several hundred
rotor revolutions prior to a full blown rotating stall event. This shows that
correlation dimension determination may help identify rotating stall precursors in
high speed axial compressors. Further work is needed to compare these results
with other existing methodologies for compressor stall identification and to
accurately determine if rotating stall is a chaotic event.
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